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Resources

 Manning Book: ActiveMQ in Action

 Apache Documentation & download:
http://activemqg.apache.org/

8 example applications in PEP:
http://repository.enterprise.purplefinder.com

Available on public Maven repositories.



http://activemq.apache.org/
http://repository.enterprise.purplefinder.com/
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Java Message Service (JMS)

* The JMS API is a MOM API for sending messages
between two or more clients.

 JMS is part of Java EE.
* Apache ActiveMQ is an implementation of JMS API.
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JMS Models

* Queue = Point-to-point model.
e Topic = Publish and subscribe model.




POLE STAR

www.polestarglobal.com

JMS Queue

* Point-to-point model.

* Producers and consumers.

* A sender posts messages to a particular queue.
* Areceiver reads messages from that queue.

* Only one consumer gets the message.

 The producer and consumer do hot have to be
running at the same time.
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JMS Topic

 Publish and subscribe model.
 Publishers and subscribers.
* A message is published to a particular topic.

* Subscribers may register interest in receiving
messages on a particular topic.

e /Zero or more consumers get the message.

 The producer and consumer do have to be running
at the same time.

* Except for durable subscriptions.
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Where does ActiveMQ meet JMS?

javax.jms.ConnectionFactory

org.apache. activem q. ActiveMQConnectionFactory

* |Inject implementation of JMS connection factory.
* Use JMS API defined in javax.jms package.
* But this is only the client side of the story.
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ActiveMQ Broker Service

org.apache.activemaq.broker.BrokerService

 The JMS client application must connect to an
ActiveMQ broker.

e The broker can be embedded or standalone.
e There can be a network of brokers.
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How to send a text message?

val cf = new ActiveMQConnectionFactory("vm://brokerName")
val ¢ = cf.createConnection

c.start
val s = c.createSession(false, AUTO_ACKNOWLEDGE)

val q = s.createQueue(“queueName”)
val p = s.createProducer(q)
val m = s.createTextMessage(“Hello World”)
p.send(m)
p.close
s.close
c.stop
c.close
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How to receive a text message?

val cf = new ActiveMQConnectionFactory("vm://brokerName")
val ¢ = cf.createConnection

c.start
val s = c.createSession(false, AUTO_ACKNOWLEDGE)

val q = s.createQueue(“queueName”)
val ¢ = s.createConsumer(q)
val m = c.receive
printin(m.getText)
c.close
s.close
c.stop
c.close
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Synchronous versus Asynchronous

* Message listener can be used to receive messages
asynchronously.

* Asynchronous to get better performance.

* Synchronous to avoid shared data issues.

 Mixing messaging passing and shared data is hard.
e Can always have multiple consumers to scale too.
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Message types and payloads

Message - No payload.

TextMessage - String payload.

MapMessage - Name/value pairs as payload.
BytesMessage - Byte array payload.
StreamMessage - Stream of primitive types.
ObjectMessage - Serialized Java object.

What about loose coupling?

14
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Request / Reply Messaging

JMS does not formally define this.

But their are headers and convenience classes.
Probably best avoided.

Apache Camel can help here.

Use Apache Camel for this.
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How do | started an embedded broker?

val b = new BrokerService {
setBrokerName(“brokerName”)
setUselmx(false)
setPersistent(false)

}

b.start
printf("Press enter to quit: ")
readLine

b.stop
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What about persistence?

 AMQ - Overall default but superceded by KahaDB.
e Memory- No persistence default.

KahaDB - Ultra fast and recommended.

JDBC - Slow but makes transactions simpler.

17
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KahaDB

* File based message store.
* Transactional journal for durability.
* Highly tuned for messaging.

e Scalable to 10,000 active connections per broker.

val b = new BrokerService {
setBrokerName(“brokerName”)
setTmpDataDirectory(new File(new File(SAN, brokerName), "transient"))
setPersistenceAdapter(new KahaDBStore {
setDirectory(new File(new File(SAN, brokerName), "persistent"))

})

18
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Connectivity

 Many protocols supported such as HTTP, HTTPS, IP
multicast, SSL, Stomp, TCP, UDP, XMPP and NIO.

 OpenWire is the default protocol.

* OpenWire over TCP is optimal in general.

e Use OpenWire over NIO to scale massively.
e Suggest OpenWire not used as public API.

19
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Basic Transport Connectors

* Client-to-broker communication.

* Client connects to embedded broker:
vm://brokerName

* Client connects to standalone broker:

tcp://host:port

e.g.
val cf = new ActiveMQConnectionFactory(“tcp://bs:61616")
val bs = new BrokerService { addConnector(“tcp://localhost:61616”) }

20
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Other Transport Connectors

* Client connects to dynamic network:
discovery:(multicast://address:port?group=name)
gives flexibility and failover

* Client connects to static network:
failover:(tcp://hostl:portl,tcp://host2:port2)
gives failover only

21
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Basic Network Connectors

e Broker-to-broker communication
e Broker connects to standalone broker

tcp://host:port

e.g.
val fbs = new BrokerService { addNetworkConnector(“tcp://tbs:61616") }

val tbs = new BrokerService { addConnector(“tcp://localhost:61616") }

22
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Other Network Connectors

* Embedded broker connects to dynamic network
multicast://address:port?group=name
gives flexibility, load balancing and failover

* Embedded broker connects to static network
static:(tcp://hostl:portl,tcp://host2:port2)
gives load balancing and failover

23
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Simple Network Topology

Application exchanges
messages with embedded
broker using vm transport

Java Application

Other applications
exchange messages with
the broker using tcp
transport
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Complex Network Topology

Producer/
Consumer
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Guaranteed Delivery Topology

Producer sends messages Consumer receives
to BrokerA messages from BrokerB

Producer
(tcp:/focalhost:61616)

Consumer
(tcp:/Nocalhost:61617)
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Acknowledge is not a transaction

* Auto-acknowledge.
val s = c.createSession(false, Session.AUTO_ACKNOWLEDGE)

No protection after message has been received.

* Client acknowlege.
val s = c.createSession(false, Session.CLIENT_ACKNOWLEDGE)

Call message.acknowledge t0 commit a bunch.
Call session.recover 10 rollback a bunch.
As good as transaction for idempotent consumer.

27
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Transactions

val s = c.createSession(true, Session.SESSION_TRANSACTED)

* For when you just can’t lose a message.
 Be sure you need It.

* |tis actually hard to lose even one message using
acknowledgements with persistence.

e Use Camel to achieve distributed transactions.
Call session.commit to commit a bunch.

Call session.roliback 10 rollback a bunch.
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Redelivery Policy

val cf = new ActiveMQConnectionFactory {
setBrokerURL("vm://brokerName”)
setRedeliveryPolicy(new RedeliveryPolicy {
setlnitialRedeliveryDelay(500L)
setUseExponentialBackOff(true)
setBackOffMultiplier(2.0)
setMaximumRedeliveries(4)

})
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Transient and Permanent Errors

* Redeliver messages after transient error.
l.e. Recover or rollback.

* Do not redeliver messages after a permanent error.
l.e. Acknowledge or commit as if ok.

* Message can be setup to expire too.

 Apache Camel can help here.

* An undelivered message is forwarded to the Dead
Letter Queue (DLQ).

e Default DLQ is a queue called “ActiveMQ.DLQ".

30



Java Management Extensions (JMX)

 JMXis enabled by delfault for a broker.
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* Allows status of the broker to interrogated.

* Allows queues to be cleared.
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Advisory topics

* Subscribe to topics at “ActiveMQ.Advisory.>".
 Event driven status.
 Populate a Comet driven Web dashboard.

 E.g. DLQ advisory messages on topic
“ActiveMQ.Advisory.MessageDLQd.>".

 E.g. Slow consumer advisory messages on topic
“ActiveMQ.Advisory.SlowConsumer.>".
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Statistics Broker Plugin

e Add this plugin to the broker.

 Send an empty message to
“ActiveMQ.Statistics.Broker” for example.

* Receive a message of name/value pairs by a
transient reply queue.
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Security

* Client-side:
val cf = new ActiveMQConnectionFactory(“vm://brokerName")

val ¢ = cf.createConnection(userName, password)

e Server-side:

val bs = new BrokerService {
setBrokerName("brokerName")
setPlugins(??? authentication & authorization ???)

}

e Send, receive & admin rights of queues and topics
controlled by users and groups.

* Wait for Security using LDAP talk.

34
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XML and Spring

* The documentation on ActiveMQ frequently
suggests using XML configuration files and also
Spring with even more XML configuration files.

 Why pretend your XML is confuration when it is
actually code?

* Anyway, the IDE helps with auto-completion and
Scala makes it look good anyway.

* Finally, use Guice to inject when you can and
Spring JavaConfig when you really must.
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Clustering

 Queue consumer clusters
* Broker clusters

* Discovery of brokers
 Network of brokers
 Master slave

* Replicated message stores
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Apache Camel

* Integrates well with Apache Camel.

 Wait for Enterprise Interation Patterns with Camel
talk.
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