POLE STAR @

Purplefinder Enterprise Platform
Messagng with ActiveMQ

Peter Potts
13t October 2010




POLE STAR

www.polestarglobal.com

Resources

 Manning Book: ActiveMQ in Action

 Apache Documentation & download:
http://activemqg.apache.org/

8 example applications in PEP:
http://repository.enterprise.purplefinder.com

Available on public Maven repositories.



http://activemq.apache.org/
http://repository.enterprise.purplefinder.com/

POLE STAR

www.polestarglobal.

Java Message Service (JMS)

* The JMS API is a MOM API for sending messages
between two or more clients.

 JMS is part of Java EE.
* Apache ActiveMQ is an implementation of JMS API.




P OWIVTWE | egr-gll;él. 5m

JMS Models

* Queue = Point-to-point model.
e Topic = Publish and subscribe model.




POLE STAR

www.polestarglobal.com

JMS Queue

* Point-to-point model.

* Producers and consumers.

* A sender posts messages to a particular queue.
* Areceiver reads messages from that queue.

* Only one consumer gets the message.

 The producer and consumer do hot have to be
running at the same time.




POLE STAR

www.polestarglobal.com

JMS Queue

s ™
consumer
N—
B o~ "
produeer consumer
— Se—
a o s ™
pde ucer | consumer
S — N—
o " o "
producer | consumer
N — e —
i i’
consumer

il



POLE STAR

www.polestarglobal.com

JMS Topic

 Publish and subscribe model.
 Publishers and subscribers.
* A message is published to a particular topic.

* Subscribers may register interest in receiving
messages on a particular topic.

e /Zero or more consumers get the message.

 The producer and consumer do have to be running
at the same time.

* Except for durable subscriptions.




JMS Topic

~

"

“—

~

8

publisher

publisher |

|

A N

Topic

publisher |

—

sraet

POLE STAR

www.polestarglobal.com

-

"

subscriber

|

2

e

subscriber

|

-

r

subscriber

|

-

»

subscriber

|

o

.

subscriber

Il



POLE STAR

www.polestarglobal.com

Where does ActiveMQ meet JMS?

javax.jms.ConnectionFactory

org.apache. activem q. ActiveMQConnectionFactory

* |Inject implementation of JMS connection factory.
* Use JMS API defined in javax.jms package.
* But this is only the client side of the story.




POLE STAR

www.polestarglobal.com

ActiveMQ Broker Service

org.apache.activemaq.broker.BrokerService

 The JMS client application must connect to an
ActiveMQ broker.

e The broker can be embedded or standalone.
e There can be a network of brokers.

10



POLE STAR

www.polestarglobal.com

How to send a text message?

val cf = new ActiveMQConnectionFactory("vm://brokerName")
val ¢ = cf.createConnection

c.start
val s = c.createSession(false, AUTO_ACKNOWLEDGE)

val q = s.createQueue(“queueName”)
val p = s.createProducer(q)
val m = s.createTextMessage(“Hello World”)
p.send(m)
p.close
s.close
c.stop
c.close

11



POLE STAR

www.polestarglobal.com

How to receive a text message?

val cf = new ActiveMQConnectionFactory("vm://brokerName")
val ¢ = cf.createConnection

c.start
val s = c.createSession(false, AUTO_ACKNOWLEDGE)

val q = s.createQueue(“queueName”)
val ¢ = s.createConsumer(q)
val m = c.receive
printin(m.getText)
c.close
s.close
c.stop
c.close

12



POLE STAR

www.polestarglobal.com

Synchronous versus Asynchronous

* Message listener can be used to receive messages
asynchronously.

* Asynchronous to get better performance.

* Synchronous to avoid shared data issues.

 Mixing messaging passing and shared data is hard.
e Can always have multiple consumers to scale too.

13



POLE STAR

www.polestarglobal.

Message types and payloads

Message - No payload.

TextMessage - String payload.

MapMessage - Name/value pairs as payload.
BytesMessage - Byte array payload.
StreamMessage - Stream of primitive types.
ObjectMessage - Serialized Java object.

What about loose coupling?

14



POLE STAR

www.polestarglobal.

Request / Reply Messaging

JMS does not formally define this.

But their are headers and convenience classes.
Probably best avoided.

Apache Camel can help here.

Use Apache Camel for this.




P OWIVTWE | egr-gll;él. 5m

How do | started an embedded broker?

val b = new BrokerService {
setBrokerName(“brokerName”)
setUselmx(false)
setPersistent(false)

}

b.start
printf("Press enter to quit: ")
readLine

b.stop

16



POLE STAR

www.polestarglobal.

What about persistence?

 AMQ - Overall default but superceded by KahaDB.
e Memory- No persistence default.

KahaDB - Ultra fast and recommended.

JDBC - Slow but makes transactions simpler.

17



POLE STAR

www.polestarglobal.com

KahaDB

* File based message store.
* Transactional journal for durability.
* Highly tuned for messaging.

e Scalable to 10,000 active connections per broker.

val b = new BrokerService {
setBrokerName(“brokerName”)
setTmpDataDirectory(new File(new File(SAN, brokerName), "transient"))
setPersistenceAdapter(new KahaDBStore {
setDirectory(new File(new File(SAN, brokerName), "persistent"))

})

18



oooooooooooooooo

Connectivity

 Many protocols supported such as HTTP, HTTPS, IP
multicast, SSL, Stomp, TCP, UDP, XMPP and NIO.

 OpenWire is the default protocol.

* OpenWire over TCP is optimal in general.

e Use OpenWire over NIO to scale massively.
e Suggest OpenWire not used as public API.

19



POLE STAR

www.polestarglobal.com

Basic Transport Connectors

* Client-to-broker communication.

* Client connects to embedded broker:
vm://brokerName

* Client connects to standalone broker:

tcp://host:port

e.g.
val cf = new ActiveMQConnectionFactory(“tcp://bs:61616")
val bs = new BrokerService { addConnector(“tcp://localhost:61616”) }

20



POLE STAR
Other Transport Connectors

* Client connects to dynamic network:
discovery:(multicast://address:port?group=name)
gives flexibility and failover

* Client connects to static network:
failover:(tcp://hostl:portl,tcp://host2:port2)
gives failover only

21



POLE STAR

www.polestarglobal.com

Basic Network Connectors

e Broker-to-broker communication
e Broker connects to standalone broker

tcp://host:port

e.g.
val fbs = new BrokerService { addNetworkConnector(“tcp://tbs:61616") }

val tbs = new BrokerService { addConnector(“tcp://localhost:61616") }

22



POLE STAR

www.polestarglobal.

Other Network Connectors

* Embedded broker connects to dynamic network
multicast://address:port?group=name
gives flexibility, load balancing and failover

* Embedded broker connects to static network
static:(tcp://hostl:portl,tcp://host2:port2)
gives load balancing and failover

23



POLE STAR

www.polestarglobal.com

Simple Network Topology

Application exchanges
messages with embedded
broker using vm transport

Java Application

Other applications
exchange messages with
the broker using tcp
transport

24



Complex Network Topology

Producer/
Consumer

r Broker 3
.“ Broker 1 and Broker 3
3 exchange messages m
3 (duplex)
. Network of Brokers

Broker 1

forwards messages to Broker 2
(forwarding bridge)

N

- -

Producer/

Consumer

-———

POLE STAR

www.polestarglobal.com

25



POLE STAR

www.polestarglobal.com

Guaranteed Delivery Topology

Producer sends messages Consumer receives
to BrokerA messages from BrokerB

Producer
(tcp:/focalhost:61616)

Consumer
(tcp:/Nocalhost:61617)

26



POLE STAR

www.polestarglobal.com

Acknowledge is not a transaction

* Auto-acknowledge.
val s = c.createSession(false, Session.AUTO_ACKNOWLEDGE)

No protection after message has been received.

* Client acknowlege.
val s = c.createSession(false, Session.CLIENT_ACKNOWLEDGE)

Call message.acknowledge t0 commit a bunch.
Call session.recover 10 rollback a bunch.
As good as transaction for idempotent consumer.

27



POLE STAR

www.polestarglobal.com

Transactions

val s = c.createSession(true, Session.SESSION_TRANSACTED)

* For when you just can’t lose a message.
 Be sure you need It.

* |tis actually hard to lose even one message using
acknowledgements with persistence.

e Use Camel to achieve distributed transactions.
Call session.commit to commit a bunch.

Call session.roliback 10 rollback a bunch.

28



Redelivery Policy

val cf = new ActiveMQConnectionFactory {
setBrokerURL("vm://brokerName”)
setRedeliveryPolicy(new RedeliveryPolicy {
setlnitialRedeliveryDelay(500L)
setUseExponentialBackOff(true)
setBackOffMultiplier(2.0)
setMaximumRedeliveries(4)

})

POLE STAR

www.polestarglobal.com

29



POLE STAR

www.polestarglobal.com

Transient and Permanent Errors

* Redeliver messages after transient error.
l.e. Recover or rollback.

* Do not redeliver messages after a permanent error.
l.e. Acknowledge or commit as if ok.

* Message can be setup to expire too.

 Apache Camel can help here.

* An undelivered message is forwarded to the Dead
Letter Queue (DLQ).

e Default DLQ is a queue called “ActiveMQ.DLQ".

30



Java Management Extensions (JMX)

 JMXis enabled by delfault for a broker.

POLE STAR

www.polestarglobal.

* Allows status of the broker to interrogated.

* Allows queues to be cleared.

31



POLESTAR
Advisory topics

* Subscribe to topics at “ActiveMQ.Advisory.>".
 Event driven status.
 Populate a Comet driven Web dashboard.

 E.g. DLQ advisory messages on topic
“ActiveMQ.Advisory.MessageDLQd.>".

 E.g. Slow consumer advisory messages on topic
“ActiveMQ.Advisory.SlowConsumer.>".

32



POLE STAR
Statistics Broker Plugin

e Add this plugin to the broker.

 Send an empty message to
“ActiveMQ.Statistics.Broker” for example.

* Receive a message of name/value pairs by a
transient reply queue.

33



POLE STAR

www.polestarglobal.com

Security

* Client-side:
val cf = new ActiveMQConnectionFactory(“vm://brokerName")

val ¢ = cf.createConnection(userName, password)

e Server-side:

val bs = new BrokerService {
setBrokerName("brokerName")
setPlugins(??? authentication & authorization ???)

}

e Send, receive & admin rights of queues and topics
controlled by users and groups.

* Wait for Security using LDAP talk.

34



POLE STAR

www.polestarglobal.

XML and Spring

* The documentation on ActiveMQ frequently
suggests using XML configuration files and also
Spring with even more XML configuration files.

 Why pretend your XML is confuration when it is
actually code?

* Anyway, the IDE helps with auto-completion and
Scala makes it look good anyway.

* Finally, use Guice to inject when you can and
Spring JavaConfig when you really must.

35



POLE STAR

www.polestarglobal.com

Clustering

 Queue consumer clusters
* Broker clusters

* Discovery of brokers
 Network of brokers
 Master slave

* Replicated message stores

36



POLE STAR

www.polestarglobal.com

Apache Camel

* Integrates well with Apache Camel.

 Wait for Enterprise Interation Patterns with Camel
talk.

37



