
Purplefinder Enterprise Platform

Messagng with ActiveMQ

Peter Potts

13th October 2010

Resources

• Manning Book: ActiveMQ in Action

• Apache Documentation & download:

http://activemq.apache.org/

• 8 example applications in PEP:

http://repository.enterprise.purplefinder.com

• Available on public Maven repositories.

2

http://activemq.apache.org/
http://repository.enterprise.purplefinder.com/

Java Message Service (JMS)

• The JMS API is a MOM API for sending messages

between two or more clients.

• JMS is part of Java EE.

• Apache ActiveMQ is an implementation of JMS API.

3

JMS Models

• Queue = Point-to-point model.

• Topic = Publish and subscribe model.

4

JMS Queue

• Point-to-point model.

• Producers and consumers.

• A sender posts messages to a particular queue.

• A receiver reads messages from that queue.

• Only one consumer gets the message.

• The producer and consumer do not have to be

running at the same time.

5

JMS Queue

6

JMS Topic

• Publish and subscribe model.

• Publishers and subscribers.

• A message is published to a particular topic.

• Subscribers may register interest in receiving

messages on a particular topic.

• Zero or more consumers get the message.

• The producer and consumer do have to be running

at the same time.

• Except for durable subscriptions.

7

JMS Topic

8

Where does ActiveMQ meet JMS?

• Inject implementation of JMS connection factory.

• Use JMS API defined in javax.jms package.

• But this is only the client side of the story.

9

ActiveMQ Broker Service

• The JMS client application must connect to an

ActiveMQ broker.

• The broker can be embedded or standalone.

• There can be a network of brokers.

10

How to send a text message?

val cf = new ActiveMQConnectionFactory("vm://brokerName")

val c = cf.createConnection

c.start

 val s = c.createSession(false, AUTO_ACKNOWLEDGE)

 val q = s.createQueue(“queueName”)

 val p = s.createProducer(q)

 val m = s.createTextMessage(“Hello World”)

 p.send(m)

 p.close

 s.close

c.stop

c.close

11

How to receive a text message?

val cf = new ActiveMQConnectionFactory("vm://brokerName")

val c = cf.createConnection

c.start

 val s = c.createSession(false, AUTO_ACKNOWLEDGE)

 val q = s.createQueue(“queueName”)

 val c = s.createConsumer(q)

 val m = c.receive

 println(m.getText)

 c.close

 s.close

c.stop

c.close

12

Synchronous versus Asynchronous

• Message listener can be used to receive messages

asynchronously.

• Asynchronous to get better performance.

• Synchronous to avoid shared data issues.

• Mixing messaging passing and shared data is hard.

• Can always have multiple consumers to scale too.

13

Message types and payloads

• Message – No payload.

• TextMessage – String payload.

• MapMessage – Name/value pairs as payload.

• BytesMessage – Byte array payload.

• StreamMessage – Stream of primitive types.

• ObjectMessage – Serialized Java object.

What about loose coupling?

14

Request / Reply Messaging

• JMS does not formally define this.

• But their are headers and convenience classes.

• Probably best avoided.

• Apache Camel can help here.

• Use Apache Camel for this.

15

How do I started an embedded broker?

val b = new BrokerService {

 setBrokerName(“brokerName”)

 setUseJmx(false)

 setPersistent(false)

}

b.start

 printf("Press enter to quit: ")

 readLine

b.stop

16

What about persistence?

• AMQ – Overall default but superceded by KahaDB.

• Memory– No persistence default.

• KahaDB – Ultra fast and recommended.

• JDBC – Slow but makes transactions simpler.

17

KahaDB

• File based message store.

• Transactional journal for durability.

• Highly tuned for messaging.

• Scalable to 10,000 active connections per broker.
val b = new BrokerService {

 setBrokerName(“brokerName”)

 setTmpDataDirectory(new File(new File(SAN, brokerName), "transient"))

 setPersistenceAdapter(new KahaDBStore {

 setDirectory(new File(new File(SAN, brokerName), "persistent"))

 })

}

18

Connectivity

• Many protocols supported such as HTTP, HTTPS, IP

multicast, SSL, Stomp, TCP, UDP, XMPP and NIO.

• OpenWire is the default protocol.

• OpenWire over TCP is optimal in general.

• Use OpenWire over NIO to scale massively.

• Suggest OpenWire not used as public API.

19

Basic Transport Connectors

• Client-to-broker communication.

• Client connects to embedded broker:

 vm://brokerName

• Client connects to standalone broker:

 tcp://host:port

e.g.

val cf = new ActiveMQConnectionFactory(“tcp://bs:61616”)

val bs = new BrokerService { addConnector(“tcp://localhost:61616”) }

20

Other Transport Connectors

• Client connects to dynamic network:

 discovery:(multicast://address:port?group=name)

 gives flexibility and failover

• Client connects to static network:

 failover:(tcp://host1:port1,tcp://host2:port2)

 gives failover only

21

Basic Network Connectors

• Broker-to-broker communication

• Broker connects to standalone broker

 tcp://host:port

e.g.

val fbs = new BrokerService { addNetworkConnector(“tcp://tbs:61616”) }

val tbs = new BrokerService { addConnector(“tcp://localhost:61616”) }

22

Other Network Connectors

• Embedded broker connects to dynamic network

 multicast://address:port?group=name

 gives flexibility, load balancing and failover

• Embedded broker connects to static network

 static:(tcp://host1:port1,tcp://host2:port2)

 gives load balancing and failover

23

Simple Network Topology

24

Complex Network Topology

25

Guaranteed Delivery Topology

26

Acknowledge is not a transaction

• Auto-acknowledge.
 val s = c.createSession(false, Session.AUTO_ACKNOWLEDGE)

 No protection after message has been received.

• Client acknowlege.
 val s = c.createSession(false, Session.CLIENT_ACKNOWLEDGE)

 Call message.acknowledge to commit a bunch.

 Call session.recover to rollback a bunch.

 As good as transaction for idempotent consumer.

27

Transactions

 val s = c.createSession(true, Session.SESSION_TRANSACTED)

• For when you just can’t lose a message.

• Be sure you need it.

• It is actually hard to lose even one message using

acknowledgements with persistence.

• Use Camel to achieve distributed transactions.

 Call session.commit to commit a bunch.

 Call session.rollback to rollback a bunch.

28

Redelivery Policy

val cf = new ActiveMQConnectionFactory {

 setBrokerURL("vm://brokerName”)

 setRedeliveryPolicy(new RedeliveryPolicy {

 setInitialRedeliveryDelay(500L)

 setUseExponentialBackOff(true)

 setBackOffMultiplier(2.0)

 setMaximumRedeliveries(4)

 })

29

Transient and Permanent Errors

• Redeliver messages after transient error.

 i.e. Recover or rollback.

• Do not redeliver messages after a permanent error.

 i.e. Acknowledge or commit as if ok.

• Message can be setup to expire too.

• Apache Camel can help here.

• An undelivered message is forwarded to the Dead

Letter Queue (DLQ).

• Default DLQ is a queue called “ActiveMQ.DLQ”.

30

Java Management Extensions (JMX)

• JMX is enabled by delfault for a broker.

• Allows status of the broker to interrogated.

• Allows queues to be cleared.

31

Advisory topics

• Subscribe to topics at “ActiveMQ.Advisory.>”.

• Event driven status.

• Populate a Comet driven Web dashboard.

• E.g. DLQ advisory messages on topic

“ActiveMQ.Advisory.MessageDLQd.>”.

• E.g. Slow consumer advisory messages on topic

“ActiveMQ.Advisory.SlowConsumer.>”.

32

Statistics Broker Plugin

• Add this plugin to the broker.

• Send an empty message to

“ActiveMQ.Statistics.Broker” for example.

• Receive a message of name/value pairs by a

transient reply queue.

33

Security

• Client-side:
 val cf = new ActiveMQConnectionFactory(“vm://brokerName")

 val c = cf.createConnection(userName, password)

• Server-side:
 val bs = new BrokerService {

 setBrokerName("brokerName")

 setPlugins(??? authentication & authorization ???)

 }

• Send, receive & admin rights of queues and topics

controlled by users and groups.

• Wait for Security using LDAP talk.

34

XML and Spring

• The documentation on ActiveMQ frequently

suggests using XML configuration files and also

Spring with even more XML configuration files.

• Why pretend your XML is confuration when it is

actually code?

• Anyway, the IDE helps with auto-completion and

Scala makes it look good anyway.

• Finally, use Guice to inject when you can and

Spring JavaConfig when you really must.

35

Clustering

• Queue consumer clusters

• Broker clusters

• Discovery of brokers

• Network of brokers

• Master slave

• Replicated message stores

36

Apache Camel

• Integrates well with Apache Camel.

• Wait for Enterprise Interation Patterns with Camel

talk.

37

